Evolution of Tube Digestion Technology for Alumina Refining

Brady Haneman
Director Light Metals (B&A)
Hatch Associates Ltd, Brisbane, Queensland, Australia
Corresponding author: brady.haneman@hatch.com

Abstract

Refineries processing Boehmitic or Diasporic bauxites require a high temperature digestion circuit to extract the alumina. These circuits typically operate at between 250°C to 280°C. Since the 1960’s, many of the worlds high temperature digestion circuits operated as dual stream circuits with the caustic liquor heated progressively through shell and tube heaters using regenerative flash steam. The liquor and bauxite streams were then mixed at the autoclave or digester vessels. With increasing focus on maximizing extraction, energy efficiency, process simplicity and plant utilisation, tube digestion technology has been increasingly the technology selected for refineries around the world. The tube digestion flowsheet preferentially combines the bauxite and caustic liquor streams together in a single stream prior to regenerative heating. This paper provides a brief overview of the technology, outlining its evolution with a review of past, present and future installations. A comparative review of key refinery process parameters using the technology is also provided with the impact on capital and operating costs for the refinery as the process design deviates from the tube digestion flowsheet.

Keywords: Tube digestion; single stream.

Introduction

Alumina refineries use primarily the “Bayer” process to extract alumina from Gibbsitic, Boehmitic or Diasporic bauxites. The Bayer process utilises a recirculating stream of caustic soda to extract the valuable alumina from the bauxite in four main processing steps. These are: (i) Digestion, where the bauxite is dissolved in caustic soda generally at elevated temperature and pressure, (ii) Clarification, where the residue solids are separated from the now ‘pregnant’ caustic liquor, (iii) Precipitation, where the alumina is crystallized out of the caustic solution to alumina tri-hydrate (Al₂O₃.3H₂O) by seeding and cooling the solution, and (iv) Calcination, where the alumina is calcined from the trihydrate to alumina (Al₂O₃).

Refineries processing Boehmitic or Diasporic bauxites require a high temperature digestion circuit to extract the alumina. These circuits typically operate at between 250°C to 270°C. Since the 1960’s, many of the worlds high temperature digestion circuits operated as dual stream circuits (refer Figure 1) with the caustic liquor heated progressively through shell and tube heaters using regenerative flash steam and mixed with the bauxite stream at the autoclave or digester vessels. In High Temperature facilities, duplex alloy steels and nickels are often employed in the heater tubes to offer erosion/corrosion resistance to caustic at elevated liquor temperatures above 170°C. Final digestion temperature conditions are typically attained with the use of direct steam sparging into the digester vessels.