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Abstract 

This article presents the numerical simulation of the electromagnetic fields inside the aluminium 

electrolysis cell and its surroundings using the magnetic vector potential formulation. The finite 

element commercial code COMSOL was employed both for meshing and solving the numerical 

model.  

Usually, in the previous works, scalar magnetic potential combined with Biot-Savart integration 

codes was used, often combining 1D and 3D finite elements. Magnetic scalar potential alone is 

not suitable for the electrolysis cell problem because internal currents are present. It must 

therefore interact with other codes to add magnetic field generated by free currents in the final 

magnetic field in an iterative process. Some works also used the integral method to account for 

the shell shielding combined with Biot-Savart law. The vector magnetic scalar potential however 

can complete the task in a single step, with the penalty of three times more degrees of freedom. 

Computational resources and codes have now reached the capacity to allow the use of the 

complete magnetic vector potential. 

The model presented here is able to include the neighbouring lines, steel shell shielding, three 

dimensional busbars and electrodes, all fully modelled in 3D finite elements, which have to 

include the surrounding air. The amount of modelled air space necessary to correctly represent the 

magnetic field bias coming from neighbouring lines is discussed. The modelling results were 

compared with measurements made in operating cells and with previous magnetic scalar potential 

results obtained using other software. 

Keywords: Aluminium electrolysis cell, magnetohydrodynamics, MHD, magnetic field 

simulation, magnetic vector potential.  

1. Introduction

In aluminium electrolysis cells, the magnetohydrodynamic (MHD) features are determinant 

factors in the current efficiency and energy efficiency of the electrolysis process. The bath and the 

liquid aluminum form a system of two immiscible liquids inside the cell cavity. Both liquids are 

set in motion by the MHD forces (Lorentz forces) produced by magnetic fields coupled with the 

current densities inside the metal and the bath. If MHD forces in the liquids are too strong and/or 

asymmetric, the metal pad movement becomes faster, increasing the back-reaction rate and also 

increasing the risk of metal pad waves. Such undesired disturbances in the process may be 

controlled by increasing anode-cathode distance (ACD), thus increasing cell voltage and energy 

consumption. Principles of MHD design of aluminium reduction cells have been laid down in the 

literature [1] aiming the improvement of magnetic fields features resulting in better cell 

performance. 

The magnetic fields found inside an electrolysis cell can be understood as a superposition of the 

effects of all conductors surrounding each cell and even the neighbour cell lines. Magnetic field 
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calculation can be very complex considering the hundreds of conductors, complex busbar 

geometry and also steel magnetization effect present in potshell, collector bars, anode yokes and 

superstructure also denominated “magnetic shielding effect”. 

 

2. Evolution of Magnetic Field Calculation in Aluminum Electrolysis Cells 

 

When the cell current and size increased in the 1960’s and 1970’s, it became clear that the MHD 

of the cell has to be understood and also considered when designing new cell technologies. From 

that period, one of first magnetic field models can be found [2], where the busbars are 

approximated as one-dimensional conductors and the shell magnetization effect was considered 

in the simulation by representing the steel as a collectivity of magnetic dipoles which produce 

magnetic shielding. This method was used in an in-house code to calculate the magnetic field of 

the cell for the input to ESTER-PHOENICS commercial code [3]. 

 

With development of more affordable computational capacity, models based on Finite Element 

Method (FEM) became available for electromagnetic field calculation. One approach was to use 

FEM for the electrical fields inside the studied cell parts combined with Biot-Savart Law 

integration for magnetic fields (from busbars, neighbouring cells and lines) and the integral 

equation method to account for steel magnetization. The main advantage of the integral equation 

method is that the surrounding air and other non-conducting permeable parts do not require to be 

meshed. This method was used in in-house codes to supply the magnetic field of the cell to 

ESTER PHOENICS commercial code [4 - 5]. It is also used in MHD-VALDIS [6 - 7]. 

 

In 1994, Dupuis and Tabsh [8] developed a procedure to compute magnetic fields in ANSYS. The 

steel parts and magnetization effects were then included in the FEM model, which required 

modelling the surrounding air of the cell. ANSYS usually offered four options to calculate 

magnetic fields: 

• Reduced Scalar potential (RSP), solves 1 load step; 

• Difference Scalar Potential (DSP) solves 2 load steps; 

• Generalized Scalar Potential (GSP) solves 3 load steps; 

• Vector potential (VP), solves 1 load step. 

 

Strictly using FEM, the only option to calculate magnetic field in regions where internal currents 

are present would be the vector potential (VP). Dupuis and Tabsh [8] cited the difficulties in using 

FEM for the complete magnetic field calculation of the electrolysis cells. At that time, they 

considered not viable to use the vector potential available in ANSYS due to the following 

problems: 

• All conductors of the studied cell, neighbouring cells and lines required solid 3D mesh. 

Meshing a large number of parts was considered a time-consuming job. 

• Vector potential uses 3 degrees of freedom per node, producing very large finite element 

matrices, impossible to solve by computers available at that time. 

• The amount of modelled air would also increase due to the necessity of enclosing all solid 

modelled busbars, further increasing the computational requirements. 

 

All scalar potential approaches are suitable only for magnetic domains without electric currents. 

However, if the magnetic field generated by internal currents is introduced by a source term in 

each element, GSP [8] could be used for the final cell magnetic field calculation. In ANSYS, it 

was then possible to use electrical elements (LINK68, SOURCE 36, SOLID5) to calculate 

currents and afterwards perform a Biot-Savart integration for each element creating the source 

term of the scalar magnetic potential. The final solution would then be reached in 4 steps: 

Biot-Savart integration plus the 3 GSP steps. Since the development of the GSP magnetic field 
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