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Abstract 

The heat dissipation at the cell bottom represents 7 - 20 % of the total aluminium smelting cell 

heat losses, depending on lining design and its condition. The heat transfer at the bottom region 

is controlled by the thermal insulation of materials. Insulation bricks can be attacked by sodium 

and bath components, if proper conditions for their diffusion are met, causing deterioration of 

the material insulation properties. Thermal measurements of the cell bottom insulation evolution 

with age were made for the existing CBA cell lining, showing progressive increment on heat 

losses along the lining life. High bottom heat losses not only require more voltage to keep the 

cell in thermal balance, increasing energy consumption, but also may induce sludge formation 

on the cathode panel. This increases cathode voltage drop, perturbs horizontal currents in the 

metal and consequently increases MHD instability. As a solution, a stainless-steel barrier was 

installed in ten test cells to prevent bath components and sodium migration into the insulation 

bricks. Heat flow measurement surveys were done to assess the steel barrier efficiency relative 

to thermal energy saving over time. 
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1. Introduction

The region below the carbon cathode block is called sub-cathodic and modern designs have 

layers of refractory and insulation bricks or slabs. The function of the refractory bricks is to 

protect the insulation underneath. This is because during cell operation sodium and bath 

percolates through the cathode block towards the shell bottom. 

A typical cross section of a used lining, as shown in Figure 1, presents a layer called “build-up” 

of white grey colour consisting of cryolite, sodium fluoride, aluminium, alumina, silicon, Al4C3, 

Fe-Si and Fe-Al alloys. Below this layer there is a dense black layer consisting of reacted 

refractory where nepheline (NaAlSiO4) and a glassy phase close to albite (NaAlSi3O8) were 

found [1]. This layer acts as a diffusion barrier slowing down further sodium and bath 

penetration. The sharp interface between the intact refractory brick and this layer is what is 

called “reaction front”. The solidus temperature of this front, if albite is present in addition of 

sodium fluorite and cryolite, is around 865 °C [1]. By design, this isotherm should be located 

within the refractory brick, not in the insulation layer.  

However, the percolation of bath through the cathode block will not stop during the cell life. 

The consequence will be accumulation of material below the cathode, the “build-up”. This may 

result in lift of the cathode panel, the “heave”, and/or compression of insulation material that 

will move the solidification isotherm downwards, thus progressing the contamination. 
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The refractories used are aluminosilicate chamotte bricks with high silica content since it was 

found to have a better cryolite resistance [2], most likely because it results in a more viscous 

glass diffusion barrier. 

 

 
 

(a) (b) 

Figure 1. Cell cross section bottom lining (a) and reaction front in detail (b). 

 

There is a fine balance in a well-designed bottom lining for aluminium reduction cells. The 

thermal resistance of the bottom should be high enough to provide good energy efficiency but at 

the same time, it should not be too high to favour the sodium and bath contamination which 

deteriorates the insulation over time. 

 

In the case of an over-insulated bottom design, in the beginning of the cell life a too high 

temperature at the hot face of the insulation layer would be present, reacting with percolating 

bath components and being destroyed completely too early in the pot life. When the insulation is 

destroyed, its thermal conductivity increases reducing the bottom thermal resistance which will 

in turn increase heat losses, thus reducing process energy efficiency. Also, sludge and bottom 

freeze may become an issue, requiring more heat generation.  

 

In a bottom with a thermal resistance designed to have the solidification isotherm inside the 

refractory bricks, the heat flux is a little higher but stable over time and it is not necessary to 

increase cell voltage to compensate extra heat losses. Figure 2 shows the heat flux 

measurements for two different lining designs of the same technology that relies only on high 

silica refractories as diffusion barrier. Lining A is the old design with theoretical thermal 

resistance of 1.24 m
2
K/W, which results in an initial heat flux of 680 W/m

2
. However, the 

insulation hot face temperature is 877 °C leading to its deterioration over time. Lining B was 

designed to have a thermal resistance of 0.84 m
2
K/W, having an initial heat flux of 980 W/m

2
, 

but in this case the insulation hot face temperature is 810 °C. The heat flux remains stable over 

the period of 600 days when the Lining A was already having more than twice the designed heat 

flux. 
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7. Conclusion 

 

Numerical model, autopsies and internal thermocouple measurements confirm the hypotheses of 

an over insulated bottom lining by design at CBA cells. Due to this over insulated bottom and 

the use of low silica refractory bricks, a diffusion barrier did not form in the bottom of the CBA 

cells. This leads to a contamination of the insulation thus increasing the heat loss from the cells 

over time. The cells were not equally affected, as the measurements of heat flux showed. Also, 

variations were found in the same cell. Even though the cell materials and start-up are the same, 

it is not known why the cells have different behaviour. It is possible that differences in preheat 

temperature distribution lead to cracks making the infiltration rate non-uniform [10]. 

 

When the sub-cathodic insulation is destroyed it is necessary to operate the cell with a higher 

voltage to compensate the extra heat losses. The cell is kept in thermal balance adjusting the 

ACD to generate the proper heat to compensate the heat losses. Although no correlation was 

found, one of the reasons for the dispersion of the voltage necessary to maintain the thermal 

balance must be related to the degree of contamination of the lining, which is not uniform even 

in the same cell. 

 

The hard muck usually found in the CBA cells is directly related to the sludge at the cathode 

top. CBA cells are prone to form sludge due to their side-break feeding, high AlF3 and 

deteriorated sub-cathodic lining. Then the sludge becomes hard muck when the cathode top 

reaches the eutectic temperature for alumina.   

 

The non-uniform distribution of hard muck, liquid and solid sludge over the cathode top 

generates electrical perturbation leading to magnetic instabilities which results in energy 

consumption increase. The accumulation of hard muck reduces the cell cavity resulting in 

sidewall bath infiltration and tap-out. 

 

So far, the test cells using the stainless-steel barrier seem to be preventing bath components and 

sodium migration into the insulation bricks. Heat flow measurement done on three occasions did 

not show significant increase of heat loss over cell life. The use of steel plates as a diffusion 

barrier in an over-insulated bottom will only postpone the destruction of the bottom insulation 

[10]. However, we expect that the stainless-steel plates will last longer than the low carbon steel 

due to their better corrosion resistance.  

 

Regarding the cost, when steel plates are used as a diffusion barrier approximately 100 kg of 

low carbon steel per m
2
 of cell bottom area are used. The test cells used only around 25 kg of 

stainless steel per m
2
. So, although the stainless steel (AISI 304) cost is 3.5 times higher than the 

cost of low carbon steel, the cost of this design is below the one using carbon steel. In the test 

cells around 850 kg of stainless steel were used which cost around USD 4 500 per cell in 2015.  

 

If we consider the average gain of cell voltage being 100 mV over a 3 000 days cell life, the 

total energy saving will be around 920 MWh at 128 kA of cell current. If the energy cost is 30 

USD/MWh the total savings will be around 27 000 USD. This is only the direct gain not 

considering gains in cell stability, reduction of sidewall tap-outs, etc. 
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