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Abstract  

This paper presents the experimental results on the milling process of an Al-53 % silicon alloy 
using a polycrystalline cubic boron nitride PCBN diamond coated tool. The influence of 
different cutting parameters on material removal rate, roughness evolution milling forces, 
machine vibration and the surface quality of the machined material was measured during the 
experiments. Cutting forces were measured using Kistler table and digital acquisition system. 
Surface roughness and morphology were quantified using a confocal laser-digital microscope. 
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1. Introduction

The aluminum microstructure composite reinforced with high volume fraction silicon particles 
(AlSi) has been identified as a potentially suitable material system for space applications, 
because it has high thermal conductivity, low coefficient of thermal expansion and low density, 
references [1 – 3]. However, the hardness of silicon is higher than that of aluminum alloy. Thus, 
it is necessary to study the effect of Si on the machinability of the material. 

The surface finish, which includes the topography and defects of the machined surface, has been 
studied in several studies. The surface roughness parameters are the basic indicators of the 
quality of the machined surface. The work of Ammula and Guo [4] showed that the feed rate 
has a major effect on the surface integrity compared to cutting speed and the depth of cut on 
6061-T651 alloy. The surface roughness trends were often associated with the formation of the 
built-up-edge (BUE). Gómez-Parra et al., [5] showed that the increase in BUE caused a 
decrease in the roughness, Ra. Indeed, the presence of the BUE increases the radius of the tool 
nozzle, thereby improving the surface roughness. However, Iwata and Ueda [6] stated that BUE 
leaves cracks on the machined surface. Thus, it increases the surface roughness and deteriorates 
the resistance of the part. Li et  al., [7] studied the effect of high cutting speed on the integrity of 
the 7075 aluminum alloy surface. Their results showed the positive effect of high cutting speed 
on surface integrity. 

Andrewes et al., [8] treated experimental results on the machinability of silicon-reinforced 
aluminum and 65 % of silicon carbide (Al / Sip + SICP) during the milling process with a 
carbide tool. They measured cutting forces, wear, tool life, and the quality of the machined 
surface. They showed that if the same volume fraction of the silicon particles is replaced by 
silicon carbide while keeping the particle size, the flexural strength and the Vickers hardness are 
improved. Therefore, machinability becomes more difficult. 

As reported by El-Gallab and Skladb [9], machining performance is a good indication of the 
workpeace machinability. During the machining operation, many parameters can affect the 
machining performance. Many studies have considered some variables as criteria of 
performance of machining. In summary, the most used criteria are Tool wear (tool life), 
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