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Abstract 

It is well known that the quality of carbon anodes is important for the aluminum industry. 
Carbon anodes provide the necessary carbon for the reduction reaction in the Hall-Héroult 
process. An increase in their electrical resistance results in an increase in energy consumption 
and greenhouse gas emissions. It is thus important to have, at the disposal of the industry, a non-
destructive tool to ensure their quality. Current practice uses visual inspection or destructive 
sampling methods, which offer limited information on the anode quality. In contrast, SERMA 
(Specific Electrical Resistance Measurement of Anodes) is a non-destructive method that uses 
the electrical resistivity distribution to determine the state and the integrity of the anode. This 
method, which can be implemented easily in a production line, allows the quality control of 
both green and baked anodes. The method used by SERMA has been validated on lab-scale 
anodes, and the results have been published previously. In this study, a prototype for industrial 
application has been built, and tests have been carried out on industrial green and baked anodes. 
In this article, the results of this study will be presented, which shows the ability of the method 
to detect both green and baked defective anodes. 
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1. Introduction

An important part of the aluminum production cost pertains to carbon anodes, which includes 
the raw material and fabrication costs.  Their poor performance in terms of energy and carbon 
consumption in the electrolysis cell could increase their contribution to the cost of production 
even further. Poor mechanical or chemical anode properties decrease the anode life due to 
breakage, thermal shock or increased air and CO2 reactivities [1-3]. This, in turn, decreases the 
productivity. Thus, it is important to fabricate good quality anodes.  

Three main steps of the anode production are paste formation, compaction, and baking. During 
the baking process, the release of volatiles from pitch, which is used as the binder, exerts 
pressure within the anode. This might cause the formation of cracks and defects in baked anode, 
which affects its final quality [1-3]. Therefore, it is important to control the anode quality before 
its introduction into an electrolysis cell. Two main quality control methods that are widely used 
in the industry are visual inspection and tests on cores from baked anodes. Visual inspection 
provides limited information on the anode quality based on only surface defects. In contrast, 
coring provides more, but limited information on the internal anode defects but only in a small 
region, usually close to the top part of the anode. This does not represent the entire anode 
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quality. Moreover, coring is a destructive technique, which is applied to only  a small number of 
anodes (about 1.5% of the anodes produced) [1]. 
 
There exists, however, some non-destructive techniques that are widely used in other fields. 
Among them, the ultrasound and the eddy current techniques have been applied for material 
inspection. Some researchers investigated the use of ultrasound inspection for carbon anodes. 
Amrani et al. [4, 5] applied this technique on core samples obtained from carbon anodes and 
was able to detect cracks on these samples. More recently, Ben Boubaker et al. [6] used the 
ultrasound inspection on thin slices taken from an industrial anode and analyzed the acoustic 
response using wavelet transforms. Then, they combined the signal and multivariable statistical 
analyses in order to determine the internal morphology of the anode samples. They validated 
their method comparing with the X-ray tomographic analysis of the same samples. Both works 
of Amrani et al. [4, 5] and of Ben Boubaker et al. [6] were carried out on small samples. To the 
best of authors’ knowledge, currently there is no reported study, which demonstrates the 
possible application of ultrasound inspection on full size anodes due to the short penetration of 
the acoustic waves into the carbon material. Electrical resistivity measurement is another 
promising non-destructive technique for inspecting conductive materials. In general, it is based 
on the strong correlation between the local resistivity and the local density of a material. 
Variations in the resistivity values indicate variations in the state of the anode, reflecting 
possibly the presence of cracks or large pores in the material if the values are higher than 
normal. In addition, electrical resistivity is also related to anode reactivity since air and carbon 
dioxide can penetrate more easily into a porous structure, increasing the reactivity in the case of 
carbon anodes. These also affect other physical, thermal, and mechanical properties. Thus, 
electrical resistivity is a strong indicator of anode quality. This technique is employed in several 
fields [7-10]. For carbon anode inspection, the use of electrical resistivity has gained the interest 
of many researchers. 
 
In a recent article of Rouget et al. [11], the use of Van der Pauw method is suggested to measure 
the resistivity and detect the flaws in a core sample. However, this is limited to a small sample 
and not applicable to a large anode block. Formerly, Seger [12] developed a system to measure 
the resistivity of a full size baked anode. In this system, the current enters the anode from the 
stub holes and leaves through a set of probes at the bottom. The voltage drop between the stub 
holes and the probe as well as the current flowing through each probe are measured. The 
electrical resistivity is then calculated from the values of the current and the voltage drop. Later, 
a similar system was proposed by Chollier-Bryn et al. [13] and by Leonard et al. [14] where 
they attempted to mimic the current distribution in an electrolysis cell. In this system, the 
current enters the anode from the stub holes and leaves from a metallic brush carpet at the 
bottom. The voltage drop is measured between a reference point at the top surface and a number 
of predefined points on the large side surfaces. The resistivity is determined by comparing the 
measured voltage drop to that obtained by a numerical model of a homogenous anode. Recently, 
Gagnon et al. [15] presented  the results of the testing of this system  in a plant environment. 
 
The last two systems are only applicable to baked anodes. It would be helpful to control the 
quality of green anodes in order to reject defective ones as early as possible in the process and 
save the cost of unnecessary baking.  Kocaefe et al. [16, 17] developed a technology, SERMA 
(Specific Electrical Resistance Measurement of Anodes),  applicable to both green and baked 
anodes.  SERMA is based on the measurement of electrical resistivities in two directions in the 
anode and the construction of a map of the anode’s resistivity distribution. The analysis of the 
resistivity distribution permits the localization of internal defects. The experimental validation 
of SERMA using laboratory anodes  was previously presented [18, 19]. Predefined defects were 
intentionally created in these anodes. The experiments showed that the resistivity values were 
correlated well with the anode porosity and the defects present in the anodes. In addition, a 
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