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Abstract 

Carbon anode, used in the aluminum electrolysis (Hall-Héroult process) is overconsumed by air 

oxidation. Several anode features may affect this overconsumption such as the impurity content, 

the graphitization level and the anode porosity (e.g. apparent density, porosity, pore size 

distribution). The two first parameters are basically related to the quality of the raw materials 

and the coke calcination conditions. The anode porosityis however affected by the anode 

manufacturing conditions, thus possible to be modified, to some extent, by adjusting the anode 

recipe and the processing parameters. This work aims at investigating the effect of anode 

porosityon its air reactivity. The porosity was characterized in several pore size ranges, 

measured by mercury porosimetry. Anode samples, in particle form, were then gasified at 

different levels under air at 525°C. The volume variation of each pore range versus carbon 

conversion was assessed and used to determine the size of the most active pores for air 

oxidation. Limitation of this pore size range could be used as an additional guideline, along with 

other targets such as high homogeneity and density, to set the optimum anode manufacturing 

parameters. 
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1 Introduction 

Aluminum is produced by the reduction of alumina (Al2O3) in an electrolysis cell at 960°C 

according to the Hall-Héroult process. The cell is made of carbon anodes, carbon cathode and 

molten cryolite as electrolyte. The carbon anode is composed of calcined petroleum coke, used 

anodes (butts) and coal tar pitch. In the electrolysis cell, the anode top is exposed to the ambient 

air (despite a covering of crushed bath and alumina) and the temperature is comprised between 

400 and 600 °C [1]. In this range, the oxygen of the air can react with the carbon anode, 

according to the Equations 2. Both reactions are undesirable since the carbon anode is 

consumed without producing metal. Between 8 and 30% of anode is consumed by the air 

oxidation (according to the anode quality and the cell conditions)[2]. 
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C (anode) + O2 (g) → CO2 (g) 

2 C (anode) + O2 (g) → 2 CO (g) 

(2a) 

(2b) 

Several studies have been published to reveal the essential parameters controlling the air 

oxidation. The air reactivity is correlated with different parameters i.e. the raw material 

properties such as the calcination level of coke [3-5], the level of anode impurities [6-9] and the 

air reactivity of the coke[10], or the manufacturing steps of the anode, for instance, the 

temperature and the soaking time during anode baking [11-15] and the anode recipe [16, 17]. 

Some studies also reported the effect of the operation conditions in the cell, i.e. the temperature 

of the anode top, the protection effect of alumina covering [1, 18] and the current density[19].  

 

Most of these parameters are controlled by the quality of the raw materials. Edwards [20] 

detailed the deterioration of the coke quality and the new challenges of the aluminum smelters 

to keep a good quality of anodes. To decrease the air oxidation, the anode manufacturing steps 

could be considered to counterbalance the poor properties of raw materials. Tkac [21] proposed 

that some parameters such as the interaction of the pitch content, the mixing time of raw 

materials and the applied pressure during vibrocompation influence the air reactivity. These 

parameters could influence the anode oxidation because they may increase the anode porosity 

and favor air burning.  

 

Suriyapraphadilok et al.[22]and Bird et al. [23] remarked that the interior of anode changed with 

the air gasification leading to pore volume variations. Turkdogan [24] proposed that the pores 

larger than a micron in carbon material control the air reactivity. For coke materials, the active 

pore range seems to be comprised between 0.5 and 15 µm [5]. In the same way, Tran et al. 

[25]found that the volume of the three pore size ranges (inferior to 2 nm, between 2 and 50 nm 

and superior to 50 nm) increased with the gasification percentage. Tordai [26] revealed that the 

anode air burning takes place preferentially in the pores comprised between 1 and 10 µm. 

Chevarin et al. [27] proposed that the air reactivity of industrial carbon anode could be 

controlled by the pores with a pore entrance radius of 1.5 and 12 µm. The porosity thus seems to 

have a significant effect on the air reactivity of anode material. However, the weight of each 

pore size during the anode gasification was not clearly quantified. In this work, the authors try 

to reveal the role of porosity and external surface of particles in gasification of carbon anodes. 

 
2 Experimental procedure 

 

2.1 Materials 

 

Prebaked anodes at laboratory scale were prepared following atypical recipe used in the anode 

manufacturing process. The raw materials used in this work were provided by Deschambault 

aluminium smelting plant (Alcoa, Canada). The anode recipe comprised calcined coke (86.1 

wt.%) and coal tar pitch (13.9 wt.%) (Table 1).Fractions of the coke particle are detailed in 

Table 2. The coke particles were preheated at 185 °C for 90 minutes admixed with the pitch. 

The blend was mixed at the same temperature for 10 minutes and then pressed at 150 °C during 

3 minutes by applying a uniaxial pressure of 70 MPa [28-30]. This sample, called green anode, 

had a diameter of 50 mm and an approximate height of 100 mm. prior to baking in a muffle 

furnace, the green samples were placed in an Inconel® box and covered by coke particles in 

order to protect them against air oxidation. The heating program was as follows: from room 

temperature to 150 °C at a heating rate of 60 °C/h, then from 150 °C to 650 °C at a rate of 20 

°C/h, and finally from 650 °C to 1100 °C at a rate of 50 °C/h. This was followed by a soaking 

time of 20 hours at 1100 °C. At the end of this cycle, the furnace was switched off and allowed 

to cool to room temperature. The anode samples were thereafter crushed using jaw and roll 

crushers and sieved through two different USA standard sieve trays, which were chosen in order 

to get a narrow particle size range of 4000 to 4380 µm(- 4 + 5 US Mesh). The particle size range 
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