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Abstract 

Some aspects concerning the use of lithium-modified baths in aluminium electrolysis cells were 
considered. Based on literature data, a number of physical and chemical properties were calculated 
for two cases: i) the bath composition was assumed to follow a liquidus temperature isotherm by 
adding lithium while at the same time reducing the amount of excess aluminium fluoride, or: ii) the 
bath was modified by adding lithium fluoride while keeping the amount of excess aluminium 
fluoride constant. Compared with normal bath compositions, lithium modified baths have higher 
electrical conductivity, lower alumina solubility, lower vapour pressure, higher density, higher 
viscosity, and higher surface tension. The current efficiency decreases when the composition 
follows a liquidus isotherm, but increases when lithium fluoride is added at constant aluminium 
fluoride. The main way for lithium out of the process is with produced bath. Using alumina 
containing 0.4 wt% sodium oxide and 0.04 wt% calcium oxide, the stationary consumption of 
lithium carbonate was estimated to be 0.32 kg/t Al. 
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1. Introduction

The use of lithium fluoride (LiF) modified bath in aluminium electrolysis cells was more common a 
few decades ago. Until about 1970 - 1980, baths with only 5 wt% excess aluminium fluoride (AlF3) 
were standard, and temperatures around 980 oC was considered normal. The temperature can be 
reduced by any fluoride, but adding more AlF3, LiF, magnesium fluoride (MgF2), or a combination 
of those have been considered to be the best options. The main benefit with LiF is the strongly 
increased electrical conductivity. Some of the older literature also refers to increased current 
efficiency (CE), while newer data indicate that the CE will be constant or reduced. 

Pechiney changed the bath composition in the acid direction (more excess AlF3) in 1978. Trials 
with LiF modified bath in 180 kA cells were performed in the 1980s, but these tests were not 
pursued [1]. Some tests were also performed in Pechiney's 280 kA cells some years later [2], but 
also in this case, it was found that the use of LiF was not profitable. Venalum used LiF-modified 
bath in the 1980s. After the introduction of point feeders, the composition was changed in the acid 
direction without LiF [3, 4]. 

Although the use of lithium modified bath is not a hot topic today, it is an idea that is being 
reconsidered from time to time. In the few cases where addition of LiF has been tried in modern 
cells [5, 6], the motivation has been to increase the amperage, to obtain better stability by increasing 
the anode-cathode distance (ACD), or to reduce the specific energy consumption (in spite of 
slightly reduced current efficiency). According to Tabereaux et al. [5] the optimum LiF 
concentration may be about 1 wt%. 
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The purpose of the present work is to quantify and illustrate the consequences of introducing LiF in 
modern cells. The author does not intend to give specific advice or recommendations concerning the 
use of LiF-modified bath. Hopefully, the data and considerations presented here may be helpful 
during the first part of a decision process concerning bath modification. 
 
2.  Bath Modification Paths 
 
Bath modification can take place along two paths: i) by replacing AlF3 by LiF in such a way that the 
liquidus temperature remains constant, or: ii) by simply adding LiF while keeping the excess AlF3 
constant (all combinations of these paths are, of course, possible). The paths are illustrated in Figure 
1. The liquidus isotherms were calculated from the equation by Solheim et al. [7], from which 3 oC 
was subtracted to account for impurity elements. It is noteworthy that when one starts at 955 oC 
liquidus temperature, not much more than 2 wt% LiF can be added without reducing the liquidus 
temperature. 
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Figure 1. Liquidus isotherms for the system Na3AlF6-5 wt% CaF2-3 wt% Al2O3-AlF3-LiF [7]. 

Path 1: Constant liquidus temperature, Path 2: constant excess AlF3 (see the text). 
 
3.  Some Physical and Chemical Properties 
 
The figures in this section show different physical and chemical properties as a function of the 
concentration of LiF. The bath composition was supposed to follow the two paths shown in Figure 
1. In all cases, the superheat was assumed to be 10 oC, and the bath always contains 5 wt% CaF2 
and 3 wt% Al2O3. The data obtained with Path 1 (constant liquidus temperature) show "hooks" at 
the end of the curves, which is related to the fact that the liquidus isotherms pass through maxima. 
 
3.1. Electrical conductivity 
 
Increased electrical conductivity is the strongest motivation for introducing LiF modified bath. The 
electrical conductivity was calculated from the equation suggested by Hives et al. [8], and the result 
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