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Solidification of cryolite-based bath takes place at different rates along the sideledge, around
alumina rafts and new anodes. The solidification rate has a significant impact on the structure
and the chemical composition that determine the thermal conductivity and thus the thickness of
sideledge or the duration of the existence of the temporary frozen bath layers in other cases.
Unfortunately, samples that can be collected in industrial cells are formed under unknown,
spatially and temporally varying conditions. For this reason, frozen bath samples were created
under different heat flux conditions in well-controlled laboratory environment using the so-
called cold finger technique. The samples were analyzed by X-ray Diffractometer (XRD) and
Scanning Electron Microscope (MEB) in Back Scattering (BS) mode in order to obtain spatial
distribution of chemical composition. Results were correlated with structural analysis. XRD
confirmed our earlier hypothesis of recrystallization of cryolite to chiolite under medium heat
flux regime. Lower a-alumina, and higher y-alumina content in the samples obtained with very
high heating rate suggest that fast cooling reduces y—o. conversion. In accordance with the
expectation, SEM-BS revealed significant variation of Na/Al ratio in the transient sample.

Keywords: Aluminum electrolysis; frozen ledge; cold-finger; chemical composition; cooling
rate.

1. Introduction

Solidification of cryolite-based bath takes place with different rates at sideledge, alumina rafts,
new anodes or any other cold objects inserted into the molten electrolyte for different operations
or measurement campaigns. The structure of the solidified phase (number of the nucleation sites
and pores, the size, the orientation and the structure of the different crystals, the proportion of
the amorphous phases), as well as the difference between the chemical compositions of molten
and frozen bath depend on the cooling heat flux or in other words, on the cooling velocity. In
fact, the cooling rate has a huge impact on the relative velocities of nucleation versus crystal
growth [1] and on the probability of the entrapment of liquid pockets by fast growing crystals
[1, 2]. Normally, the diffusion of ions is promoted during the solidification by the high melting
point of pure cryolite [3 - 5], however, an elevated rate of solidification can block this
movement.

The structure and the chemical composition determine the thermal conductivity and thus either
the thickness of sideledge or the duration of the existence of temporary frozen bath layers
around cold objects.

Some information can be found about the structure and the chemical composition of frozen bath
in sideledge [2 - 8] and in the crust [1, 9] using samples taken from industrial cells. However,
those samples were formed under unknown and varying conditions. To resolve this problem, the
authors of this paper created frozen bath samples under different heat flux conditions in well
controlled laboratory environment in order to study the variation of the chemical composition
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and structure with the cooling rate. Results about the structure obtained with Scanning Electron
Microscope (SEM) with Secondary Electron Imaging (SEI) mode were published earlier [10].
This paper presents chemical composition data correlated with structure, heat flux and
solidification rate. The two latter were computed with an in-house developed mathematical
model using measured temperature histories as input.

2. Methodology
2.1.1 Solidified bath samples produced using cold finger technique

Solidified bath samples were produced in a well controlled laboratory cell using the so-called
cold finger technique. Namely, cold brick-shaped blocks (probes) were inserted into an unstirred
synthetic cryolite based molten bath with known composition. Both the composition and the
superheat of the bath corresponded to those used in many RTA plants. The quantity of the bath
was high enough to avoid any significant perturbation of bulk liquid temperature by the
insertion of the probe itself. In the absence of electrolysis, the absorption of heat during the
insertion of the probe and the loss toward the environment were compensated by the same
heating furnace that melted the bath. Samples were cut from the middle of the large surfaces of
the blocks in order to minimize the end effect. On the external surface, there were some easily
removable, round shaped, dark colored impurity particles, which were removed and thus not
included in the chemical analysis [10].

The solidified bath samples were produced under both transient and near steady-state
conditions, including strongly varying (28 — 2200 kW/m?) and relatively constant, low heat
fluxes (28 — 100 kW/m?) respectively. For brevity, in the following we call the first technique
“transient”, the second “steady-state”. Table 1 summarizes the main characteristics of the two
scenarios. More details are presented in an earlier published paper [10].

Table 1. Main characteristics of the transient and near steady-state production of samples

Transient Steady state
. hollow with inner channels
Probe | 250511;1 gflug)zbéjci‘m 125 x 11 x 2.54 cm with a wall
' ' thickness of 6.35 mm
Initial preheated to ~ 150 °C in order preheated o~ 150 °C i order to
temperature to remove humidity remove humidity and. then preheated to
the bath temperature in the molten bath
insertion of cold probe into the molten
bath, then waiting until the transient
crust is completely re-melted and the
Sample insertion of cold probe to the | temperature of the probe stabilizes
producing bath in order to obtain the close to the bulk temperature; near
process thickest possible crust steady-state crust is formed by the
circulation of dried and compressed
cold air in the channels of the probe
with constant flow rate
. 3 minutes ~ 30 minutes
Duration of o : probes were removed when the
insertion this time was estimated by our temperature became constant inside
mathematical model[11]
the probe

Carbon steel and stainless steel were chosen to build the transient and steady-state probes
respectively due to their relatively good mechanical and chemical resistance to high temperature
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5.

e The earlier presented hypothesis that medium solidification rate promotes the
recrystallization of cryolite to chiolite (exsolution) due to the presence of acidic liquid
pockets entrapped by growing crystals, was confirmed by XRD.

e The contact between the molten bath and the steel probe forms some FeO that is
entrapped mainly in a thin, generally darker layer, close to the probe.
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