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Abstract 

Along with the development of low energy cells, Hydro developed a range of operating 
strategies for low energy cell operation. Amongst these, a method for starting-up cells using as 
little energy as possible, along with eliminating anode effect-producing PFC emissions was 
developed. This paper presents the results and benefits of such procedures, that cover protection 
of the cathode surface, reduced energy during preheating and early life and emissions 
elimination during start-up. 

Keywords: Low energy start-up of aluminium electrolysis cells; preheating of cells; preparation 
of cell preheat. 

1 Hydro Aluminium Vision and Challenges about Low Energy Operation 

Over the last few years, Hydro has started publishing on the results of its efforts in developing 
low energy electrolytic aluminium cell technology aimed both at retrofitting in its smelters as 
well as equipping its upcoming brownfield expansion in Karmøy [1 - 4]. It is the company’s 
vision to be a leader in low energy, low emission aluminium production technology as part of its 
Bigger, Better, Greener approach. The long-term objectives include the development of 
affordable reduction cell technology that approaches an energy consumption of 10 kWh per kg 
aluminium, and achieve a company-wide neutral carbon footprint by the year 2020. 

The contribution of Hydro’s Primary Metal Technology team touches many aspects related to 
these goals. On the electrolytic cell technology development front, efforts focus on developing 
low-emission, low-energy cell technology compatible with heat recovery and carbon capture. 
The low-energy cell technology development team has made steps in designing cells able to 
sustain such demanding operation. The advances achieved in reducing electrical resistivity in all 
conducting elements of the electrolytic cells, the reduction of heat loss of the same cells, 
together with design optimization of the potshells and superstructure result in technologies 
having significantly increased capabilities. While these new cells remain fully able to operate in 
more “traditional” mode, e.g. at common voltage and amperage, they have the capacity of being 
run at much lower energy consumption.  

This capacity is however not sufficient to guarantee stable low-energy operation in the long 
term. Indeed, sustained low energy operation requires changes in the process control strategy. 
The low heat loss of such cells makes them more sensitive to thermal deviations caused by 
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common issues encountered during operation. The low-energy operating mode is implemented 
by using parameter sets and control code that reduce heat input and ACD variations. For 
example, low energy operation involves running the cells at reduced superheat compared with 
traditional operation. The low superheat in turn demands that adapted operating parameters for 
heat balance, alumina feeding and event handling be modified to ensure that a sludge-free and 
low anode effect frequency operation is maintained.  
 
One critical element needed to sustain low-energy operation is to ensure that the linings exit 
unscathed from start-up and early life. Indeed, autopsies have shown that cells sometimes have 
bath or metal infiltrations that can cause rapid lining damage, making operation at low energy 
impossible and also significantly shortening potlife. Live measurements show that such 
infiltrations tend to happen early in the life of the cells, often within the first few days of 
operation. Careful analysis of the events happening during this critical period has led to 
modifications of the start-up and early life targets and procedures that decrease the risk of 
damaging infiltrations. Another target of this work is to reduce the time and energy required to 
start the cells; luckily, this objective is very compatible with the lining protection target 
mentioned above, so no compromises had to be done. 
 
2 Traditional Cell Start-up Strategies 
 
Although it is usually a single and relatively short event in a cell’s life, start-up is one of the 
most critical part of it. Indeed, bringing a cold, empty, freshly lined cell to a hot, liquid-filled 
and aluminium-producing state without causing damage or infiltrations is not straightforward. A 
complex, interlinked array of thermal expansion, shrinkage, sodium-driven expansion and 
deformations affect the various parts of the cell assembly during the various phases of 
preheating, start-up and early life. Moreover, these interactions are dynamic and do not happen 
simultaneously all over the cells: some areas like the corners tend to evolve slower than others, 
further increasing the complexity of the process. The sensitivity of a cell to damages further 
increases when it is larger and lightweight like Hydro’s newest cell technology.  
 
The activities leading to a normally operating cell can be divided into five stages: 

- Cell lining: where the potshell is lined according to specifications, 
- Cell preparation: where the lined cell is equipped with anodes and insulation in order to 

be preheated, 
- Cell preheating: where the prepared cell is heated to a desired temperature, 
- Cell start-up: where liquid bath is poured into the preheated cell and anodes lifted to 

start the electrolytic process, 
- Early life: where the operating parameters reach specified targets that aim at 

establishing long term, stable operation. 
 
There are multiple variations on each of these stages in the industry. Every smelter has its own 
recipe, targets and limitations (in-situ lining, gas preheating or fast turnaround for example) that 
lead to compromises in the way every stage is performed. A wide range of procedures are 
therefore used, leading to significant variations in preheating quality, heating rates and chemical 
conditions during early life. These variations are most often not or only partially measured so 
that they are either accepted or simply ignored. These compromises often lead to similar results: 
bath is poured onto insufficiently or unevenly preheated cathode, then freezes over large areas 
of the cathode, leaving only a small area for the current to flow. This results in a high voltage 
developing in the cell (the “start-up anode effect”), with the typical voltage reduction following 
as the frozen bath melts and more cathode surface becomes available to carry current. 
 
Figure 1 presents the voltage evolution typical of a traditional preheat and start-up. One can 
appreciate the start-up anode effect (followed by a genuine one shortly afterwards) and slow 
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