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Abstract 

In the course of processing tropical bauxites into smelter grade alumina, organic impurities 

accumulate in Bayer liquors, eventually degrading to sodium oxalate (Na2C2O4). As a rule, in 

each Bayer cycle there is an imbalance between the oxalate formation rate and its further 

degradation to sodium carbonate (Na2CO3), resulting in oxalate accumulation. Since oxalate 

negatively affects the grain size of product alumina, refineries control oxalate concentration by 

removing it from their liquor. Sodium oxalate has a high hazard class so its disposal is 

expensive. Other useful components (notably Na2CO3), are disposed along with salt cake. To 

reduce alkali losses and environmental risks, some refineries convert sodium oxalate with lime 

to calcium oxalate (Na2CO3), recycling sodium to the Bayer process. Other methods are 

implemented, such as bacterial degradation of oxalate, but these methods are also expensive, 

and some do not entirely eliminate the risks. This paper presents a study on the impact of natural 

factors, including solar radiation and catalytic iron compounds in residue on the rate of sodium 

oxalate degradation to sodium carbonate in a disposal area. An economically feasible process 

for managing salt cake disposal is suggested that provides for alkali return to Bayer process and 

the reduction in the salt cake’s hazard class. 
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1. Introduction

At UC RUSAL refineries four methods are used for sodium oxalate (Na2C2O4) removal from 

alkaline aluminate liquors: 

1. Reacting of evaporated spent liquor with the sand fraction of lime. Calcium oxalate

CaC2O4 is bound in its surface, and the residue, a mix of calcium oxalate CaC2O4,

unreacted lime CaO, calcium hydroxide Ca(OH)2, tri-calcium aluminate

3CaO.Al2O3.6H2O or TCA, is filtered and disposed of in the residue area;

2. Reacting of wash water from the washing of hydrate seed or product with milk of lime

under defined conditions including; the stoichiometric ratio of CaO : NaOx, the

concentration of Na2Ototal, and temperature and reaction time to optimise formation of

calcium oxalate. The soda in liquor is simultaneously causticized by ≥ 80%, while much

of the aluminum is lost to TCA formation. The mud consisting of a mix CaC2O4, TCA

and CaCO3 is thickened and disposed in the residue area;

3. Precipitation of sodium oxalate from liquor supersaturated in NaOx, filtration and

disposal of the salt cake in a specially equipped section of the residue area;
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4. Precipitation of sodium oxalate cake from evaporated spent liquor (further concentrated 

by caustic addition), filtration, then dissolution of oxalate cake which is then reacted 

with milk of lime to convert sodium oxalate to calcium oxalate. The calcium oxalate 

mud is filtered and again disposed of in a specially equipped section of the residue area. 

 

All four methods have advantages and shortcomings, but the criterion for assessment of 

effective management of this type of waste should be considered as follows: 

 

1. the minimum quantity of disposed waste; 

2. minimum losses in the main production process, and lowest cost of waste production; 

3. avoiding accumulation of these wastes or reusing them. 

 

Method 3 matches the first criterion since it produces the minimum amount of oxalate salt cake. 

Processing with lime leads to an increase in the disposed oxalate residue by 3 times and more. 

 

The second criterion is satisfied by the 3rd and partially by the 2nd method. For the 3rd method, 

the main expenses are energy consumption for evaporation of part of the spent liquor flow, and 

its cooling to obtain sodium oxalate supersaturation. Expenses for evaporation are anyway 

justified in the broader process context since it is also closes the refinery water balance. 

 

Repeated attempts have been made to develop processes avoiding disposal of oxalate waste 

having a certain class of hazard, and to process it immediately. Some of best known are listed 

below: 

 

 Degradation of oxalate by various oxidizers including hydrogen peroxide (H2O2), ozone 

(O3) or other strong oxidizers, strong ultra-violet radiation, etc., etc. These methods are 

widely known, but haven't been implemented due to their relatively high cost; 

 Addition of calcium oxalate cake as a mix of CaC2O4, TCA and CaCO3 to limestone 

supplied for roasting in shaft furnaces to produce CaO. This allows recycling most of 

the sodium and aluminum in the form of caustic alkali and sodium aluminate and the 

calcium as lime back to alumina production process. The main drawback of this method 

are restrictions in the operation of shaft limestone roasting furnaces; 

 The experience of Worsley Alumina in microbiological decomposition of sodium 

oxalate with saline bacteria [1] at which the decomposition rate of NaOx may reach 2500 

mg/l/hour in the lab. As a result of the reaction, sodium bicarbonate NaHCO3 is formed 

which reacts with caustic alkali and is converted to sodium carbonate; 

 The experience of Alcoa World Alumina in the microbiological decomposition of 

sodium oxalate with aerobic bacteria (at the pilot site of the Kwinana refinery), where 

they have managed to select conditions for the stable existence of biomass and to run 

the process in a continuous mode, making it more reliable and simpler to maintain. As 

with the Worsley process, oxalate is converted into sodium bicarbonate/carbonate 

which after a caustization, can be recycled back to the alumina production process. 

 

Biological degradation of oxalate is undoubtedly a prospective direction, but has a number of 

drawbacks, including: 

 

 The essential requirement to use a number of chemical reagents (fertilizers) for 

maintaining bacterial activity;  

 the rather complicated control and management of the processes proceeding in 

biological reactors including maintenance of the set pH, concentration of liquor, 

temperature of the process, concentration of oxygen dissolved by aeration, etc.; 
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Figure 4 – The order of storage at the site of disposal of sodium oxalate. 

Nos of landfill cells from 1 to 15 – 1
st
 layer; Nos of landfill cells from 16 to 30 – 2

nd
 layer 

 

Thus, the maximum period of direct contact of sodium oxalate with natural ultraviolet and its 

maximum decomposition will be attained. 

 

4.  Conclusions 
 

The proposed method is simple, and enables the minimization of the cost for sodium oxalate 

management, in particular to reduce the specific consumption of lime in alumina refining by at 

least 10% (the amount used to neutralize sodium oxalate cake).  

 

The offered technology allows the arrangement of a landfill for continuous processing of 

oxalate mud to a soda solution for recycling into the alumina production process without waste 

volume accumulation. 
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